什么是纳什均衡呢?纳什均衡名称来源及简介:
纳什均衡,Nash equilibrium ,又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名…
约翰·纳什1948年作为年轻数学博士生进入普林斯顿大学。其研究成果见于题为《非合作博弈》(1950)的博士论文。该博士论文导致了《n人博弈中的均衡点》(1950)和题为《非合作博弈》(1951)两篇论文的发表。纳什在上述论文中,介绍了合作博弈与非合作博弈的区别。他对非合作博弈的最重要贡献是阐明了包含任意人数局中人和任意偏好的一种通用解概念,也就是不限于两人零和博弈。该解概念后来被称为纳什均衡。
纳什均衡定义:
假设有n个局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己效用最大化。所有局中人策略构成一个策略组合(Strategy Profile)。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。
纳什均衡经典案例:囚徒困境
(1950年,数学家塔克任斯坦福大学客座教授,在给一些心理学家作讲演时,讲到两个囚犯的故事。)
假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。表2.2给出了这个博弈的支付矩阵。
表2.2 囚徒困境博弈
——————————————————————————
┃ B ┃ B ┃
————————┃————————┃————————┃
┃ 坦白 ┃ 抵赖 ┃
————————┃————————┃————————┃
A 坦白 ┃ –8, –8 ┃ 0, –10 ┃
————————┃————————┃————————┃
A 抵赖 ┃ –10, 0 ┃ –1, –1 ┃
————————┃————————┃————————┃
关于案例,显然最好的策略是双方都抵赖,结果是大家都只被判1年。但是由于两人处于隔离的情况,首先应该是从心理学的角度来看,当事双方都会怀疑对方会出卖自己以求自保、其次才是亚当·斯密的理论,假设每个人都是“理性的经济人”,都会从利己的目的出发进行选择。这两个人都会有这样一个盘算过程:假如他坦白,我抵赖,得坐10年监狱,坦白最多才8年;他要是抵赖,我就可以被释放,而他会坐10年牢。综合以上几种情况考虑,不管他坦白与否,对我而言都是坦白了划算。两个人都会动这样的脑筋,最终,两个人都选择了坦白,结果都被判8年刑期。
基于经济学中Rational agent的前提假设,两个囚犯符合自己利益的选择是坦白招供,原本对双方都有利的策略不招供从而均被释放就不会出现。这样两人都选择坦白的策略以及因此被判8年的结局,纳什均衡”首先对亚当·斯密的“看不见的手”的原理提出挑战:按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果。但是我们可以从“纳什均衡”中引出“看不见的手”原理的一个悖论:从利己目的出发,结果损人不利己,既不利己也不利他。
记载纳什生平的书有:《普林斯顿的幽灵》(又译为《美丽心灵》)西尔维娅.娜萨
再来看一段纳什均衡理论的介绍:
1994年诺贝尔经济学奖的获得者是美国普林斯顿大学的约翰·纳什。纳什获得诺贝尔经济学奖的原因是他在博奕沦领域的贡献,他提出了“纳什均衡”理论、关于博奕论,流传最广的是一个叫做“囚徒困境”的故事:
话说有一天,一个富翁在家中被杀,财物被盗;警方在此案的侦破过程中,抓到两个犯罪嫌疑人张三和李四,并从他们的住处搜出被害人家中丢失的财物。但是,他们矢口否认曾杀过人,辩称他们只是顺手牵羊偷了点儿东西。于是警方将两人隔离,分别关在不同的房间进行审讯。警察分别对张三和李四说,“由于你们的偷盗罪已有确凿的证据,所以可以判你们1年刑期。但是,我可以和你做个交易。如果你单独坦白杀人的罪行,我只判你3个月的监禁,但你的同伙要被判10年刑。如果你拒不坦白,而被同伙检举,那么你就将被判10年刑,他只判3个月的监禁。但是,如果你们两人都坦白交代,那么,你们都要被判5年刑。”
张三和李四怎么办呢?他们面临着两难的选择——坦白或抵赖。显然最好的策略是双方都抵赖,结果是大家都只被判一年。但是由于两人处于隔离的情况下无法串供,按照亚当·斯密的理论,每一个人都是一个“理性的经济人”,都会从利己的目的出发进行选择。这两个人都会有这样一个盘算过程:假如他招了,我不招,得坐10年监狱,招了才5年,所以招了划算;假如我招了,他也招,得坐5年,他要是不招,我就只坐3个月,而他会坐10年牢,也是招了划算。综合以上几种情况考虑,不管他招不招,对我而言都是招了划算。两个人都会动这样的脑筋,最终,两个人都选择了招?结果都被判5年刑期。原本对双方都有利的策略(抵赖)和结局 (被判1年刑)就不会出现。这就是著名的“囚徒困境”。它实际上反映了一个很深刻的问题,这就是个人理性与集体理性的矛盾。
实际上,如果两个都抵赖,各判刑1年,显然比都判5年好,但实际上做不到,因为它不满足个人理性要求。作为一个理性的人,张三和李四都会想,如果我抵赖而对方坦白的话,自己就可能判刑10年,理性的人是不会冒这种险的。但张三和李四都理性选择的结果,两人都被判了5年,最优的被判1年的结果并没有出现。也就是说,对每个人而言都是理性的选择,但对于整个集体来说却是不理性的。
这与传统经济学所言的结论相悖。传统经济学认为市场经济存在“看不见的手”,它调节的结果是每个人的理性选择最终会造成对整个集体的最大利益。实际上,就像囚徒困境一样,这只看不见的手在参与选择的人数只有少数几个的时候会失去作用,因为这个时候,人们决策的过程会考虑其他参与者的想法,就像赌博和下棋的时候一样,这就和买家和卖家数量都巨大时的完全竞争不完全一样,需要新的一套思路进行研究。
在上面的例子中,我们注意到了一个并非最优的结果,就是两人都选择坦白的策略以及因此被判5年的结果,这个结果被称为“纳什均衡”,也叫非合作均衡。博奕论中最基本的概念就是“纳什均衡”,一谈到博奕论,人们说的最多的最著名的也是“纳什均衡”。纳什均衡指的是这样一种战略组合,这种战略组合由所有参与人的最优战略组成,也就是说,给定别人战略的情况下,没有任何单个参与人有积极性选择其他战略使自己获得更大利益,从而没有任何人有积极性打破这种均衡。
当然,“纳什均衡”虽然是由单个人的最优战略组成,但并不意味着是一个总体最优的结果。如上述,在个人理性与集体理性的冲突的情况下,各人追求利己行为而导致的最终结局是一个“纳什均衡”,也是对所有人都不利的结局。
从这个意义上说,“纳什均衡”提出的悖论实际上动摇了西方经济学的基石。同时,它也提示我们:合作是有利的“利己策略”。实际上,如果上述两个囚徒能够串供进行合作,那么他们一定会选择都抵赖从而只因偷盗罪被判1年,当然,正是考虑到了这一点,所以警察才对他们隔离审查从而获知了事实真相,对囚徒而言最有利的合作结果才没有出现。“纳什均衡”描述的就是一种非合作博奕均衡,在现实中非合作的情况要比合作情况普遍。所以“纳什均衡”是对冯·诺依曼和摩根斯特恩的合作博奕理论的重大发展,甚至可以说是一场革命。
今天,纳什均衡被广泛应用于各个领域的研究,尤其在进行制度分析寸,我们可应用它得出一个很重要结论:一种制度(体制)安排要发生效力,必须是一种纳什均衡。否则,这种制度安排便不能成立。(据《诺贝尔经济学奖经典理论》一书)
没有评论:
发表评论