已建成并投入使用的国家实验室:
1 中国科学技术大学 合肥 同步辐射国家实验室
2 中科院高能物理研究所 北京 正负电子对撞机国家实验室
3 中科院近代物理研究所 兰州 重离子加速器国家实验室
4 中科院金属研究所 沈阳 材料科学国家(联合)实验室
2003年启动的国家实验室试点:
中国科大 微尺度实验室
清华大学 信息科学实验室
北京大学+中科院化学所 分子化学实验室
华中科大+武汉邮科院+武汉数理所+中船717所 武汉光电实验室
中科院物理所 凝聚态实验室
2006年确定的第二批国家实验室试点:
1)海洋----青岛海洋科学与技术国家实验室
中国海洋大学等青岛海洋研究优势单位联合建设
2)航空航天----航空科学与技术国家实验室
北京航空航天大学独家建设
3)人口与健康----重大疾病研究国家实验室
中国医学科学院独家建设
4)核能----磁约束核聚变国家实验室
中国科学院合肥物质科学研究院牵头联合西南核物理研究院建设
5)新能源----洁净能源国家实验室
中国科学院大连化学物理研究所独家建设
6)先进制造----船舶与海洋工程国家实验室
上海交通大学独家建设
7)量子调控----微结构国家实验室
南京大学独家建设
8)蛋白质研究----蛋白质科学国家实验室
中国科学院生物物理研究所独家建设
9)轨道交通--------现代轨道交通国家实验室
西南交通大学独家建设
10)农业----------现代农业国家实验室
中国农业大学独家建设
2009年1月12日星期一
量子自杀与量子永生
令人毛骨悚然的“量子自杀”实验在80年代末由Hans Moravec,Bruno Marchal等人提出,而又在1998年为宇宙学家Max Tegmark在那篇广为人知的宣传MWI的论文中所发展和重提。这实际上也是薛定谔猫的一个真人版。大家知道在猫实验里,如果原子衰变,猫就被毒死,反之则存活。对此,哥本哈根派的解释是:在我们没有观测它之前,猫是“又死又活”的,而观测后猫的波函数发生坍缩,猫要么死要么活。MWI则声称:每次实验必定同时产生一只活猫和一只死猫,只不过它们存在于两个平行的世界中。 KIDS Fans Channel BBS7 k4 Q: @+ n& t0 n0 D
两者有何实质不同呢?其关键就在于,哥本哈根派认为猫始终只有一只,它开始处在叠加态,坍缩后有50%的可能死,50%的可能活。而多宇宙认为猫并未叠加,而是“分裂”成了两只,一死一活,必定有一只活猫! bbs.kidfanschannel.net, L3 ?- A) _# c" B3 r0 C" U, o
现在假如有一位勇于为科学献身的仁人义士,他自告奋勇地去代替那只倒霉的猫。出于人道主义,为了让他少受痛苦,我们把毒气瓶改为一把枪。如果原子衰变(或者利用别的量子机制,比如光子通过了半镀银),则枪就“砰”地一响送我们这位朋友上路。反之,枪就只发出“咔”地一声空响。
现在关键问题来了,当一个光子到达半镀镜的时候,根据哥本哈根派,你有一半可能听到“咔”一声然后安然无恙,另一半就不太美妙,你听到“砰”一声然后什么都不知道了。而根据多宇宙,必定有一个你听到“咔”,另一个你在另一个世界里听到“砰”。但问题是,听到“砰”的那位随即就死掉了,什么感觉都没有了,这个世界对“你”来说就已经没有意义了。对你来说,唯一有意义的世界就是你活着的那个世界。 9 _: K' S `, B1 K
bbs.kidfanschannel.net& H$ B, u( ~! U! L; T9 S7 E
所以,从人择原理(我们在前面已经讨论过人择原理)的角度上来讲,对你唯一有意义的“存在”就是那些你活着的世界。你永远只会听到“咔”而继续活着!因为多宇宙和哥本哈根不同,永远都会有一个你活在某个世界! : s' L" E& B/ F' G5 S0 N
bbs.kidfanschannel.net. s4 y' A4 C$ y2 ?, V
让我们每隔一秒钟发射一个光子到半镀镜来触动机关。此时哥本哈根预言,就算你运气非常之好,你也最多听到好几声“咔”然后最终死掉。但多宇宙的预言是:永远都会有一个“你”活着,而他的那个世界对“你”来说是唯一有意义的存在。只要你坐在枪口面前,那么从你本人的角度来看,你永远只会听到每隔一秒响一次的“咔”声,你永远不死(虽然在别的数目惊人的世界中,你已经尸横遍野,但那些世界对你没有意义)! x7 N! e- z" Y7 g' [
但只要你从枪口移开,你就又会听到“砰”声了,因为这些世界重新对你恢复了意义,你能够活着见证它们。总而言之,多宇宙的预言是:只要你在枪口前,(对你来说)它就绝对不会发射,一旦你移开,它就又开始随机地“砰”。
/ C2 D P% B( I$ j+ Q3 L Z( g3 y
所以,对这位测试者他自己来说,假如他一直听到“咔”而好端端地活着,他就可以在很大程度上确信,多宇宙解释是正确的。假如他死掉了,那么哥本哈根解释就是正确的。不过这对他来说也已经没有意义了,人都死掉了。 # K$ a& c% g1 Y) j# ]; `# j( L/ N
各位也许对这里的人择原理大感困惑。无论如何,枪一直“咔”是一个极小极小的概率不是吗(如果n次,则概率就是1/2^n)?怎么能说对你而言枪“必定”会这样行动呢?但问题在于,“对你而言”的前提是,“你”必须存在! KIDS Fans Channel BBS! N: U+ m" f6 S, R
$ C, U, F) [) h9 }, b
让我们这样来举例:假如你是男性,你必定会发现这样一个“有趣”的事实:你爸爸有儿子、你爷爷有儿子、你曾祖父有儿子……一直上溯到任意n代祖先,不管历史上冰川严寒、洪水猛兽、兵荒马乱、饥饿贫瘠,他们不但都能存活,而且子嗣不断,始终有儿子,这可是一个非常小的概率(如果你是女性,可以往娘家那条路上推)。但假如你因此感慨说,你的存在是一个百年不遇的“奇迹”,就非常可笑了。很明显,你能够感慨的前提条件是你的存在本身!事实上,如果“客观”地讲,一个家族n代都有儿子的概率极小,但对你我来说,却是“必须”的,概率为100%的!同理,有人感慨宇宙的精巧,其产生的概率是如此低,但按照人择原理,宇宙必须如此!在量子自杀中,只要你始终存在,那么对你来说枪就必须100%地不发射!但很可惜的是:就算你发现了多宇宙解释是正确的,这也只是对你自己一个人而言的知识。就我们这些旁观者而言事实永远都是一样的:你在若干次“咔”后被一枪打死。我们能够做的,也就是围绕在你的尸体旁边争论,到底是按照哥本哈根,你已经永远地从宇宙中消失了,还是按照MWI,你仍然在某个世界中活得逍遥自在。我们这些“外人”被投影到你活着的那个世界,这个概率极低,几乎可以不被考虑,但对你“本人”来说,你存在于那个世界却是100%必须的!而且,因为各个世界之间无法互相干涉,所以你永远也不能从那个世界来到我们这里,告诉我们多宇宙论是正确的!
其实,Tegmark等人根本不必去费心设计什么“量子自杀”实验,按照他们的思路,要是多宇宙解释是正确的,那么对于某人来说,他无论如何试图去自杀都不会死!要是他拿刀抹脖子,那么因为组成刀的是一群符合薛定谔波动方程的粒子,所以总有一个非常非常小,但确实不为0的可能性,这些粒子在那一刹那都发生了量子隧道效应,以某种方式丝毫无损地穿透了该人的脖子,从而保持该人不死!当然这个概率极小极小,但按照MWI,一切可能发生的都实际发生了,所以这个现象总会发生在某个世界!在“客观”上讲,此人在99.99999…99%的世界中都命丧黄泉,但从他的“主观视角”来说,他却一直活着!不管换什么方式都一样,跳楼也好,卧轨也好,上吊也好,总存在那么一些世界,让他还活着。从该人自身的视角来看,他怎么死都死不掉! 9 d: A2 ?1 a0 \" J. C
这就是从量子自杀思想实验推出的怪论,美其名曰“量子永生”(quantum immortality)。只要从主观视角来看,不但一个人永远无法完成自杀,事实上他一旦开始存在,就永远不会消失!总存在着一些量子效应,使得一个人不会衰老,而按照MWI,这些非常低的概率总是对应于某个实际的世界!如果多宇宙理论是正确的,那么我们得到的推论是:一旦一个“意识”开始存在,从它自身的角度来看,它就必定永生!(天哪,我们怎么又扯到了“意识”!)
这是最强版本的人择原理,也称为“最终人择原理”。 5 v# G, M% ~# `* h" R9 w0 S) b
可以想象,Tegmark等多宇宙论的支持者见到自己的提议被演绎成了这么一个奇谈怪论后,是怎样的一种哭笑不得的心态。这位宾夕法尼亚大学的宇宙学家不得不出来声明,说“永生”并非MWI的正统推论。他说一个人在“死前”,还经历了某种非量子化的过程,使得所谓的意识并不能连续过渡保持永存。可惜也不太有人相信他的辩护。
KIDS Fans Channel BBS) N) A1 J( k4 G# }
关于这个问题,科学家们和哲学家们无疑都会感到兴趣。支持MWI的人也会批评说,大量宇宙样本中的“人”的死去不能被简单地忽略,因为对于“意识”我们还是几乎一无所知的,它是如何“连续存在”的,根本就没有经过考察。一些偏颇的意见会认为,假如说“意识”必定会在某些宇宙分支中连续地存在,那么我们应该断定它不但始终存在,而且永远“连续”,也就是说,我们不该有“失去意识”的时候(例如睡觉或者昏迷)。不过,也许的确存在一些世界,在那里我们永不睡觉,谁又知道呢?再说,暂时沉睡然后又苏醒,这对于“意识”来说好像不能算作“无意义”的。而更为重要的,也许还是如何定义在多世界中的“你”究竟是个什么东西的问题。总之,这里面逻辑怪圈层出不穷,而且几乎没有什么可以为实践所检验的东西,都是空对空。我想,波普尔对此不会感到满意的!
( J9 w$ a2 t% e7 X* P- \7 a
关于自杀实验本身,我想也不太有人会仅仅为了检验哥本哈根和MWI而实际上真的去尝试!因为不管怎么样,实验的结果也只有你自己一个人知道而已,你无法把它告诉广大人民群众。而且要是哥本哈根解释不幸地是正确的,那你也就呜乎哀哉了。虽说“朝闻道,夕死可矣”,但一般来说,闻了道,最好还是利用它做些什么来得更有意义。而且,就算你在枪口前真的不死,你也无法确实地判定,这是因为多世界预言的结果,还是只不过仅仅因为你的运气非常非常非常好。你最多能说:“我有99.999999..99%的把握宣称,多世界是正确的。”如此而已。 根据Shikhovtsev最新的传记,埃弗莱特本人也在某种程度上相信他的“意识”会沿着某些不通向死亡的宇宙分支而一直延续下去(当然他不知道自杀实验)。但具有悲剧和讽刺意味的是,他一家子都那么相信平行宇宙,以致他的女儿丽兹(Liz)在自杀前留下的遗书中说,她去往“另一个平行世界”和他相会了(当然,她并非为了检验这个理论而自杀)。或许埃弗莱特一家真的在某个世界里相会也未可知,但至少在我们现在所在的这个世界(以及绝大多数其他世界)里,我们看到人死不能复生了。所以,至少考虑在绝大多数世界中家人和朋友们的感情,我强烈建议各位读者不要在科学热情的驱使下做此尝试。
我们在多世界理论这条路上走得也够久了,和前面在哥本哈根派那里一样,我们的探索越到后来就越显得古怪离奇,道路崎岖不平,杂草丛生,让我们筋疲力尽,而且最后居然还会又碰到“意识”,“永生”之类形而上的东西(真是见鬼)!我们还是知难而退,回到原来的分岔路口,再看看还有没有别的不同选择。不过我们在离开这条道路前,还有一样东西值得一提,那就是所谓的“量子计算机”。1977年,埃弗莱特接受惠勒和德威特等人的邀请去德克萨斯大学演讲,午饭的时候,德威特特意安排惠勒的一位学生坐在埃弗莱特身边,后者向他请教了关于希尔伯特空间的问题。这个学生就是大卫?\;德义奇(David Deutsch)。可以这样理解: # n. |- p, k4 U/ C5 F J
在一个一维世界,也就是一条直线上,一个有智慧的质点发现,自己只能向前后运动。更高维度的我们会笑话它——你可以往左右转啊!
在一个二维世界,也就是一个平面上,一个有智慧的质点发现,自己只能向四周运动。更高维度的我们会笑话它——你可以往上跳啊!
在我们这个世界,很多事情我们看来是必然的,其实在更高的某种层次上看,可能性有无数种,只是我们这个维度下无法选择而已。
: e3 t3 [2 B4 }/ t
“宇宙分叉说”也就是这个意思。 . ?" {6 w7 \ ?# C% X
宇宙在任何时刻都在分叉,而且都分了无穷多个叉,什么样的事情都有可能发生。 ; a% Y: Z5 x: Y6 Y1 o
比如一颗子弹向你迎面飞来,在击中你脑袋的瞬间,宇宙就已经分叉了,在绝大多数的分支里,你当场死掉,其他小部分分支里,你侥幸逃生,在更个别的分支里,你突然变成奥特曼,“咻”地一声飞走了……
死亡的你,逃生的你,变成超人的你,在子弹达到你脑袋前的瞬间,都是你,和你拥有一样的身体,一样的记忆,一样的女朋友,但就在这一瞬间,你们分叉了,或者说宇宙分叉了,彼此再无一丁点瓜葛。 $ c: o7 v( R, T) E/ E; e7 j
分叉的不止是你,还有你所存在的世界里的一切,你们朋友们跟你一起分叉了,某些分支里,你的朋友为你治丧,某些分叉里,朋友为你庆幸,还有某些分叉里,朋友惊呼“老婆,快和牛魔王出来看上帝!”......宇宙世界本虚幻
两者有何实质不同呢?其关键就在于,哥本哈根派认为猫始终只有一只,它开始处在叠加态,坍缩后有50%的可能死,50%的可能活。而多宇宙认为猫并未叠加,而是“分裂”成了两只,一死一活,必定有一只活猫! bbs.kidfanschannel.net, L3 ?- A) _# c" B3 r0 C" U, o
现在假如有一位勇于为科学献身的仁人义士,他自告奋勇地去代替那只倒霉的猫。出于人道主义,为了让他少受痛苦,我们把毒气瓶改为一把枪。如果原子衰变(或者利用别的量子机制,比如光子通过了半镀银),则枪就“砰”地一响送我们这位朋友上路。反之,枪就只发出“咔”地一声空响。
现在关键问题来了,当一个光子到达半镀镜的时候,根据哥本哈根派,你有一半可能听到“咔”一声然后安然无恙,另一半就不太美妙,你听到“砰”一声然后什么都不知道了。而根据多宇宙,必定有一个你听到“咔”,另一个你在另一个世界里听到“砰”。但问题是,听到“砰”的那位随即就死掉了,什么感觉都没有了,这个世界对“你”来说就已经没有意义了。对你来说,唯一有意义的世界就是你活着的那个世界。 9 _: K' S `, B1 K
bbs.kidfanschannel.net& H$ B, u( ~! U! L; T9 S7 E
所以,从人择原理(我们在前面已经讨论过人择原理)的角度上来讲,对你唯一有意义的“存在”就是那些你活着的世界。你永远只会听到“咔”而继续活着!因为多宇宙和哥本哈根不同,永远都会有一个你活在某个世界! : s' L" E& B/ F' G5 S0 N
bbs.kidfanschannel.net. s4 y' A4 C$ y2 ?, V
让我们每隔一秒钟发射一个光子到半镀镜来触动机关。此时哥本哈根预言,就算你运气非常之好,你也最多听到好几声“咔”然后最终死掉。但多宇宙的预言是:永远都会有一个“你”活着,而他的那个世界对“你”来说是唯一有意义的存在。只要你坐在枪口面前,那么从你本人的角度来看,你永远只会听到每隔一秒响一次的“咔”声,你永远不死(虽然在别的数目惊人的世界中,你已经尸横遍野,但那些世界对你没有意义)! x7 N! e- z" Y7 g' [
但只要你从枪口移开,你就又会听到“砰”声了,因为这些世界重新对你恢复了意义,你能够活着见证它们。总而言之,多宇宙的预言是:只要你在枪口前,(对你来说)它就绝对不会发射,一旦你移开,它就又开始随机地“砰”。
/ C2 D P% B( I$ j+ Q3 L Z( g3 y
所以,对这位测试者他自己来说,假如他一直听到“咔”而好端端地活着,他就可以在很大程度上确信,多宇宙解释是正确的。假如他死掉了,那么哥本哈根解释就是正确的。不过这对他来说也已经没有意义了,人都死掉了。 # K$ a& c% g1 Y) j# ]; `# j( L/ N
各位也许对这里的人择原理大感困惑。无论如何,枪一直“咔”是一个极小极小的概率不是吗(如果n次,则概率就是1/2^n)?怎么能说对你而言枪“必定”会这样行动呢?但问题在于,“对你而言”的前提是,“你”必须存在! KIDS Fans Channel BBS! N: U+ m" f6 S, R
$ C, U, F) [) h9 }, b
让我们这样来举例:假如你是男性,你必定会发现这样一个“有趣”的事实:你爸爸有儿子、你爷爷有儿子、你曾祖父有儿子……一直上溯到任意n代祖先,不管历史上冰川严寒、洪水猛兽、兵荒马乱、饥饿贫瘠,他们不但都能存活,而且子嗣不断,始终有儿子,这可是一个非常小的概率(如果你是女性,可以往娘家那条路上推)。但假如你因此感慨说,你的存在是一个百年不遇的“奇迹”,就非常可笑了。很明显,你能够感慨的前提条件是你的存在本身!事实上,如果“客观”地讲,一个家族n代都有儿子的概率极小,但对你我来说,却是“必须”的,概率为100%的!同理,有人感慨宇宙的精巧,其产生的概率是如此低,但按照人择原理,宇宙必须如此!在量子自杀中,只要你始终存在,那么对你来说枪就必须100%地不发射!但很可惜的是:就算你发现了多宇宙解释是正确的,这也只是对你自己一个人而言的知识。就我们这些旁观者而言事实永远都是一样的:你在若干次“咔”后被一枪打死。我们能够做的,也就是围绕在你的尸体旁边争论,到底是按照哥本哈根,你已经永远地从宇宙中消失了,还是按照MWI,你仍然在某个世界中活得逍遥自在。我们这些“外人”被投影到你活着的那个世界,这个概率极低,几乎可以不被考虑,但对你“本人”来说,你存在于那个世界却是100%必须的!而且,因为各个世界之间无法互相干涉,所以你永远也不能从那个世界来到我们这里,告诉我们多宇宙论是正确的!
其实,Tegmark等人根本不必去费心设计什么“量子自杀”实验,按照他们的思路,要是多宇宙解释是正确的,那么对于某人来说,他无论如何试图去自杀都不会死!要是他拿刀抹脖子,那么因为组成刀的是一群符合薛定谔波动方程的粒子,所以总有一个非常非常小,但确实不为0的可能性,这些粒子在那一刹那都发生了量子隧道效应,以某种方式丝毫无损地穿透了该人的脖子,从而保持该人不死!当然这个概率极小极小,但按照MWI,一切可能发生的都实际发生了,所以这个现象总会发生在某个世界!在“客观”上讲,此人在99.99999…99%的世界中都命丧黄泉,但从他的“主观视角”来说,他却一直活着!不管换什么方式都一样,跳楼也好,卧轨也好,上吊也好,总存在那么一些世界,让他还活着。从该人自身的视角来看,他怎么死都死不掉! 9 d: A2 ?1 a0 \" J. C
这就是从量子自杀思想实验推出的怪论,美其名曰“量子永生”(quantum immortality)。只要从主观视角来看,不但一个人永远无法完成自杀,事实上他一旦开始存在,就永远不会消失!总存在着一些量子效应,使得一个人不会衰老,而按照MWI,这些非常低的概率总是对应于某个实际的世界!如果多宇宙理论是正确的,那么我们得到的推论是:一旦一个“意识”开始存在,从它自身的角度来看,它就必定永生!(天哪,我们怎么又扯到了“意识”!)
这是最强版本的人择原理,也称为“最终人择原理”。 5 v# G, M% ~# `* h" R9 w0 S) b
可以想象,Tegmark等多宇宙论的支持者见到自己的提议被演绎成了这么一个奇谈怪论后,是怎样的一种哭笑不得的心态。这位宾夕法尼亚大学的宇宙学家不得不出来声明,说“永生”并非MWI的正统推论。他说一个人在“死前”,还经历了某种非量子化的过程,使得所谓的意识并不能连续过渡保持永存。可惜也不太有人相信他的辩护。
KIDS Fans Channel BBS) N) A1 J( k4 G# }
关于这个问题,科学家们和哲学家们无疑都会感到兴趣。支持MWI的人也会批评说,大量宇宙样本中的“人”的死去不能被简单地忽略,因为对于“意识”我们还是几乎一无所知的,它是如何“连续存在”的,根本就没有经过考察。一些偏颇的意见会认为,假如说“意识”必定会在某些宇宙分支中连续地存在,那么我们应该断定它不但始终存在,而且永远“连续”,也就是说,我们不该有“失去意识”的时候(例如睡觉或者昏迷)。不过,也许的确存在一些世界,在那里我们永不睡觉,谁又知道呢?再说,暂时沉睡然后又苏醒,这对于“意识”来说好像不能算作“无意义”的。而更为重要的,也许还是如何定义在多世界中的“你”究竟是个什么东西的问题。总之,这里面逻辑怪圈层出不穷,而且几乎没有什么可以为实践所检验的东西,都是空对空。我想,波普尔对此不会感到满意的!
( J9 w$ a2 t% e7 X* P- \7 a
关于自杀实验本身,我想也不太有人会仅仅为了检验哥本哈根和MWI而实际上真的去尝试!因为不管怎么样,实验的结果也只有你自己一个人知道而已,你无法把它告诉广大人民群众。而且要是哥本哈根解释不幸地是正确的,那你也就呜乎哀哉了。虽说“朝闻道,夕死可矣”,但一般来说,闻了道,最好还是利用它做些什么来得更有意义。而且,就算你在枪口前真的不死,你也无法确实地判定,这是因为多世界预言的结果,还是只不过仅仅因为你的运气非常非常非常好。你最多能说:“我有99.999999..99%的把握宣称,多世界是正确的。”如此而已。 根据Shikhovtsev最新的传记,埃弗莱特本人也在某种程度上相信他的“意识”会沿着某些不通向死亡的宇宙分支而一直延续下去(当然他不知道自杀实验)。但具有悲剧和讽刺意味的是,他一家子都那么相信平行宇宙,以致他的女儿丽兹(Liz)在自杀前留下的遗书中说,她去往“另一个平行世界”和他相会了(当然,她并非为了检验这个理论而自杀)。或许埃弗莱特一家真的在某个世界里相会也未可知,但至少在我们现在所在的这个世界(以及绝大多数其他世界)里,我们看到人死不能复生了。所以,至少考虑在绝大多数世界中家人和朋友们的感情,我强烈建议各位读者不要在科学热情的驱使下做此尝试。
我们在多世界理论这条路上走得也够久了,和前面在哥本哈根派那里一样,我们的探索越到后来就越显得古怪离奇,道路崎岖不平,杂草丛生,让我们筋疲力尽,而且最后居然还会又碰到“意识”,“永生”之类形而上的东西(真是见鬼)!我们还是知难而退,回到原来的分岔路口,再看看还有没有别的不同选择。不过我们在离开这条道路前,还有一样东西值得一提,那就是所谓的“量子计算机”。1977年,埃弗莱特接受惠勒和德威特等人的邀请去德克萨斯大学演讲,午饭的时候,德威特特意安排惠勒的一位学生坐在埃弗莱特身边,后者向他请教了关于希尔伯特空间的问题。这个学生就是大卫?\;德义奇(David Deutsch)。可以这样理解: # n. |- p, k4 U/ C5 F J
在一个一维世界,也就是一条直线上,一个有智慧的质点发现,自己只能向前后运动。更高维度的我们会笑话它——你可以往左右转啊!
在一个二维世界,也就是一个平面上,一个有智慧的质点发现,自己只能向四周运动。更高维度的我们会笑话它——你可以往上跳啊!
在我们这个世界,很多事情我们看来是必然的,其实在更高的某种层次上看,可能性有无数种,只是我们这个维度下无法选择而已。
: e3 t3 [2 B4 }/ t
“宇宙分叉说”也就是这个意思。 . ?" {6 w7 \ ?# C% X
宇宙在任何时刻都在分叉,而且都分了无穷多个叉,什么样的事情都有可能发生。 ; a% Y: Z5 x: Y6 Y1 o
比如一颗子弹向你迎面飞来,在击中你脑袋的瞬间,宇宙就已经分叉了,在绝大多数的分支里,你当场死掉,其他小部分分支里,你侥幸逃生,在更个别的分支里,你突然变成奥特曼,“咻”地一声飞走了……
死亡的你,逃生的你,变成超人的你,在子弹达到你脑袋前的瞬间,都是你,和你拥有一样的身体,一样的记忆,一样的女朋友,但就在这一瞬间,你们分叉了,或者说宇宙分叉了,彼此再无一丁点瓜葛。 $ c: o7 v( R, T) E/ E; e7 j
分叉的不止是你,还有你所存在的世界里的一切,你们朋友们跟你一起分叉了,某些分支里,你的朋友为你治丧,某些分叉里,朋友为你庆幸,还有某些分叉里,朋友惊呼“老婆,快和牛魔王出来看上帝!”......宇宙世界本虚幻
2009年1月9日星期五
最美丽的十大物理实验
美国的物理学家最近评出的这些实验共同之处是:它们都“抓”住了物理学家眼中“最美丽”的科学之魂,这种美丽是一种经典概念:最简单的仪器和设备,最根本、最单纯的科学结论,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。
无论在加速器中裂解亚原子粒子,还是测序基因序列,或分析一颗遥远恒星的摆动,这些让世界瞩目的实验常常动辄耗资百万美元,产生出洪水般汹涌的数据,并需要超高速计算机处理几个月。一些实验小组因此成长为一个个的小公司。
罗伯特•;克瑞丝是美国纽约大学石溪分校哲学系的教员、布鲁克海文国家实验室的历史学家,他最近在美国的物理学家中作了一次调查,要求他们提名历史上最美丽的科学实验。9月份出版的《物理学世界》刊登了排名前10位的最美丽实验,其中的大多数都是我们耳熟能详的经典之作。令人惊奇的是这十大实验中的绝大多数是科学家独立完成,最多有一两个助手。所有的实验都是在实验桌上进行的,没有用到什么大型计算工具比如电脑一类,最多不过是把直尺或者是计算器。
所有这些实验共同之处是他们都仅仅“抓”住了物理学家眼中“最美丽”的科学之魂,这种美丽是一种经典概念:最简单的仪器和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。
从十大经典科学实验评选本身,我们也能清楚地看出2000年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。
《物理学世界》对这些实验进行的排名是根据公众对它们的认识程度,排在第一位的是展示物理世界量子特征的实验。但是,科学的发展是一个积累的过程,9月25日的美国《纽约时报》根据时间顺序对这些实验重新排序,并作了简单的解释。
埃拉托色尼测量地球圆周长
米歇尔·傅科钟摆实验
去年,科学家们在南极安置一个摆钟,并观察它的摆动。他们是在重复1851年巴黎的一个著名实验。1851年法国科学家傅科在公众面前做了一个实验,用一根长220英尺的钢丝将一个62磅重的头上带有铁笔的铁球悬挂在屋顶下,观测记录它前后摆动的轨迹。周围观众发现钟摆每次摆动都会稍稍偏离原轨迹并发生旋转时,无不惊讶。实际上这是因为房屋在缓缓移动。傅科的演示说明地球是在围绕地轴自转的。在巴黎的纬度上,钟摆的轨迹是顺时针方向,30小时一周期。在南半球,钟摆应是逆时针转动,而在赤道上将不会转动。在南极,转动周期是24小时。(排名第十)
卢瑟福发现核子实验
1911年卢瑟福还在曼彻斯特大学做放射能实验时,原子在人们的印象中就好像是“葡萄干布丁”,大量正电荷聚集的糊状物质,中间包含着电子微粒。但是他和他的助手发现向金箔发射带正电的阿尔法微粒时有少量被弹回,这使他们非常吃惊。卢瑟福计算出原子并不是一团糊状物质,大部分物质集中在一个中心小核上,现在叫作核子,电子在它周围环绕。(排名第九)
伽利略的加速度实验
伽利略继续提炼他有关物体移动的观点。他做了一个6米多长,3米多宽的光滑直木板槽。再把这个木板槽倾斜固定,让铜球从木槽顶端沿斜面滑下,并用水钟测量铜球每次下滑的时间,研究它们之间的关系。亚里士多德曾预言滚动球的速度是均匀不变的:铜球滚动两倍的时间就走出两倍的路程。伽利略却证明铜球滚动的路程和时间的平方成比例:两倍的时间里,铜球滚动4倍的距离,因为存在恒定的重力加速度。(排名第八)
古埃及的一个现名为阿斯旺的小镇。在这个小镇上,夏至日正午的阳光悬在头顶:物体没有影子,阳光直接射入深水井中。埃拉托色尼是公元前3世纪亚历山大图书馆馆长,他意识到这一信息可以帮助他估计地球的周长。在以后几年里的同一天、同一时间,他在亚历山大测量了同一地点的物体的影子。发现太阳光线有轻微的倾斜,在垂直方向偏离大约7度角。
剩下的就是几何学问题了。假设地球是球状,那么它的圆周应跨越360度。如果两座城市成7度角,就是7/360的圆周,就是当时5000个希腊运动场的距离。因此地球周长应该是25万个希腊运动场。今天,通过航迹测算,我们知道埃拉托色尼的测量误差仅仅在5%以内。(排名第七)
卡文迪许扭矩实验
牛顿的另一伟大贡献是他的万有引力定律,但是万有引力到底多大?
18世纪末,英国科学家亨利·卡文迪许决定要找出这个引力。他将两边系有小金属球的6英尺木棒用金属线悬吊起来,这个木棒就像哑铃一样。再将两个350磅重的铅球放在相当近的地方,以产生足够的引力让哑铃转动,并扭转金属线。然后用自制的仪器测量出微小的转动。
测量结果惊人的准确,他测出了万有引力恒量的参数,在此基础上卡文迪许计算地球的密度和质量。卡文迪许的计算结果是:地球重6.0×1024公斤,或者说13万亿万亿磅。(排名第六)
托马斯·杨的光干涉实验
牛顿也不是永远正确。在多次争吵后,牛顿让科学界接受了这样的观点:光是由微粒组成的,而不是一种波。1830年,英国医生、物理学家托马斯·杨用实验来验证这一观点。他在百叶窗上开了一个小洞,然后用厚纸片盖住,再在纸片上戳一个很小的洞。让光线透过,并用一面镜子反射透过的光线。然后他用一个厚约1/30英寸的纸片把这束光从中间分成两束。结果看到了相交的光线和阴影。这说明两束光线可以像波一样相互干涉。这个实验为一个世纪后量子学说的创立起到了至关重要的作用。(排名第五)
牛顿的棱镜分解太阳光
艾萨克·牛顿出生那年,伽利略与世长辞。牛顿1665年毕业于剑桥大学的三一学院,后来因躲避鼠疫在家里呆了两年,后来顺利地得到了工作。
当时大家都认为白光是一种纯的没有其它颜色的光(亚里士多德就是这样认为的),而彩色光是一种不知何故发生变化的光。
为了验证这个假设,牛顿把一面三棱镜放在阳光下,透过三棱镜,光在墙上被分解为不同颜色,后来我们称作为光谱。人们知道彩虹的五颜六色,但是他们认为那是因为不正常。牛顿的结论是:正是这些红、橙、黄、绿、青、蓝、紫基础色有不同的色谱才形成了表面上颜色单一的白色光,如果你深入地看看,会发现白光是非常美丽的。(排名第四)
罗伯特·米利肯的油滴实验
很早以前,科学家就在研究电。人们知道这种无形的物质可以从天上的闪电中得到,也可以通过摩擦头发得到。1897年,英国物理学家J·J·托马斯已经确立电流是由带负电粒子即电子组成的。1909年美国科学家罗伯特·米利肯开始测量电流的电荷。
米利肯用一个香水瓶的喷头向一个透明的小盒子里喷油滴。小盒子的顶部和底部分别连接一个电池,让一边成为正电板,另一边成为负电板。当小油滴通过空气时,就会吸一些静电,油滴下落的速度可以通过改变电板间的电压来控制。
米利肯不断改变电压,仔细观察每一颗油滴的运动。经过反复试验,米利肯得出结论:电荷的值是某个固定的常量,最小单位就是单个电子的带电量。(排名第三)
伽利略的自由落体实验
在16世纪末,人人都认为重量大的物体比重量小的物体下落得快,因为伟大的亚里士多德已经这么说了。伽利略,当时在比萨大学数学系任职,他大胆地向公众的观点挑战。著名的比萨斜塔实验已经成为科学中的一个故事:他从斜塔上同时扔下一轻一重的物体,让大家看到两个物体同时落地。伽利略挑战亚里士多德的代价也许是他失去了工作,但他展示的是自然界的本质,而不是人类的权威,科学作出了最后的裁决。(排名第二)
托马斯·杨的双缝演示应用于电子干涉实验
牛顿和托马斯·杨对光的性质研究得出的结论都不完全正确。光既不是简单的由微粒构成,也不是一种单纯的波。20世纪初,麦克斯·普克朗和阿尔伯特·爱因斯坦分别指出一种叫光子的东西发出光和吸收光。但是其他实验还是证明光是一种波状物。经过几十年发展的量子学说最终总结了两个矛盾的真理:光子和亚原子微粒(如电子、光子等等)是同时具有两种性质的微粒,物理上称它们:波粒二象性。
将托马斯·杨的双缝演示改造一下可以很好地说明这一点。科学家们用电子流代替光束来解释这个实验。根据量子力学,电粒子流被分为两股,被分得更小的粒子流产生波的效应,它们相互影响,以至产生像托马斯·杨的双缝演示中出现的加强光和阴影。这说明微粒也有波的效应。
这一期《物理学世界》上另一篇由编辑彼特·罗格斯写的文章推测,直到1961年,某一位科学家才在真实的世界里做出了这一实验。(排名第一)
无论在加速器中裂解亚原子粒子,还是测序基因序列,或分析一颗遥远恒星的摆动,这些让世界瞩目的实验常常动辄耗资百万美元,产生出洪水般汹涌的数据,并需要超高速计算机处理几个月。一些实验小组因此成长为一个个的小公司。
罗伯特•;克瑞丝是美国纽约大学石溪分校哲学系的教员、布鲁克海文国家实验室的历史学家,他最近在美国的物理学家中作了一次调查,要求他们提名历史上最美丽的科学实验。9月份出版的《物理学世界》刊登了排名前10位的最美丽实验,其中的大多数都是我们耳熟能详的经典之作。令人惊奇的是这十大实验中的绝大多数是科学家独立完成,最多有一两个助手。所有的实验都是在实验桌上进行的,没有用到什么大型计算工具比如电脑一类,最多不过是把直尺或者是计算器。
所有这些实验共同之处是他们都仅仅“抓”住了物理学家眼中“最美丽”的科学之魂,这种美丽是一种经典概念:最简单的仪器和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。
从十大经典科学实验评选本身,我们也能清楚地看出2000年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。
《物理学世界》对这些实验进行的排名是根据公众对它们的认识程度,排在第一位的是展示物理世界量子特征的实验。但是,科学的发展是一个积累的过程,9月25日的美国《纽约时报》根据时间顺序对这些实验重新排序,并作了简单的解释。
埃拉托色尼测量地球圆周长
米歇尔·傅科钟摆实验
去年,科学家们在南极安置一个摆钟,并观察它的摆动。他们是在重复1851年巴黎的一个著名实验。1851年法国科学家傅科在公众面前做了一个实验,用一根长220英尺的钢丝将一个62磅重的头上带有铁笔的铁球悬挂在屋顶下,观测记录它前后摆动的轨迹。周围观众发现钟摆每次摆动都会稍稍偏离原轨迹并发生旋转时,无不惊讶。实际上这是因为房屋在缓缓移动。傅科的演示说明地球是在围绕地轴自转的。在巴黎的纬度上,钟摆的轨迹是顺时针方向,30小时一周期。在南半球,钟摆应是逆时针转动,而在赤道上将不会转动。在南极,转动周期是24小时。(排名第十)
卢瑟福发现核子实验
1911年卢瑟福还在曼彻斯特大学做放射能实验时,原子在人们的印象中就好像是“葡萄干布丁”,大量正电荷聚集的糊状物质,中间包含着电子微粒。但是他和他的助手发现向金箔发射带正电的阿尔法微粒时有少量被弹回,这使他们非常吃惊。卢瑟福计算出原子并不是一团糊状物质,大部分物质集中在一个中心小核上,现在叫作核子,电子在它周围环绕。(排名第九)
伽利略的加速度实验
伽利略继续提炼他有关物体移动的观点。他做了一个6米多长,3米多宽的光滑直木板槽。再把这个木板槽倾斜固定,让铜球从木槽顶端沿斜面滑下,并用水钟测量铜球每次下滑的时间,研究它们之间的关系。亚里士多德曾预言滚动球的速度是均匀不变的:铜球滚动两倍的时间就走出两倍的路程。伽利略却证明铜球滚动的路程和时间的平方成比例:两倍的时间里,铜球滚动4倍的距离,因为存在恒定的重力加速度。(排名第八)
古埃及的一个现名为阿斯旺的小镇。在这个小镇上,夏至日正午的阳光悬在头顶:物体没有影子,阳光直接射入深水井中。埃拉托色尼是公元前3世纪亚历山大图书馆馆长,他意识到这一信息可以帮助他估计地球的周长。在以后几年里的同一天、同一时间,他在亚历山大测量了同一地点的物体的影子。发现太阳光线有轻微的倾斜,在垂直方向偏离大约7度角。
剩下的就是几何学问题了。假设地球是球状,那么它的圆周应跨越360度。如果两座城市成7度角,就是7/360的圆周,就是当时5000个希腊运动场的距离。因此地球周长应该是25万个希腊运动场。今天,通过航迹测算,我们知道埃拉托色尼的测量误差仅仅在5%以内。(排名第七)
卡文迪许扭矩实验
牛顿的另一伟大贡献是他的万有引力定律,但是万有引力到底多大?
18世纪末,英国科学家亨利·卡文迪许决定要找出这个引力。他将两边系有小金属球的6英尺木棒用金属线悬吊起来,这个木棒就像哑铃一样。再将两个350磅重的铅球放在相当近的地方,以产生足够的引力让哑铃转动,并扭转金属线。然后用自制的仪器测量出微小的转动。
测量结果惊人的准确,他测出了万有引力恒量的参数,在此基础上卡文迪许计算地球的密度和质量。卡文迪许的计算结果是:地球重6.0×1024公斤,或者说13万亿万亿磅。(排名第六)
托马斯·杨的光干涉实验
牛顿也不是永远正确。在多次争吵后,牛顿让科学界接受了这样的观点:光是由微粒组成的,而不是一种波。1830年,英国医生、物理学家托马斯·杨用实验来验证这一观点。他在百叶窗上开了一个小洞,然后用厚纸片盖住,再在纸片上戳一个很小的洞。让光线透过,并用一面镜子反射透过的光线。然后他用一个厚约1/30英寸的纸片把这束光从中间分成两束。结果看到了相交的光线和阴影。这说明两束光线可以像波一样相互干涉。这个实验为一个世纪后量子学说的创立起到了至关重要的作用。(排名第五)
牛顿的棱镜分解太阳光
艾萨克·牛顿出生那年,伽利略与世长辞。牛顿1665年毕业于剑桥大学的三一学院,后来因躲避鼠疫在家里呆了两年,后来顺利地得到了工作。
当时大家都认为白光是一种纯的没有其它颜色的光(亚里士多德就是这样认为的),而彩色光是一种不知何故发生变化的光。
为了验证这个假设,牛顿把一面三棱镜放在阳光下,透过三棱镜,光在墙上被分解为不同颜色,后来我们称作为光谱。人们知道彩虹的五颜六色,但是他们认为那是因为不正常。牛顿的结论是:正是这些红、橙、黄、绿、青、蓝、紫基础色有不同的色谱才形成了表面上颜色单一的白色光,如果你深入地看看,会发现白光是非常美丽的。(排名第四)
罗伯特·米利肯的油滴实验
很早以前,科学家就在研究电。人们知道这种无形的物质可以从天上的闪电中得到,也可以通过摩擦头发得到。1897年,英国物理学家J·J·托马斯已经确立电流是由带负电粒子即电子组成的。1909年美国科学家罗伯特·米利肯开始测量电流的电荷。
米利肯用一个香水瓶的喷头向一个透明的小盒子里喷油滴。小盒子的顶部和底部分别连接一个电池,让一边成为正电板,另一边成为负电板。当小油滴通过空气时,就会吸一些静电,油滴下落的速度可以通过改变电板间的电压来控制。
米利肯不断改变电压,仔细观察每一颗油滴的运动。经过反复试验,米利肯得出结论:电荷的值是某个固定的常量,最小单位就是单个电子的带电量。(排名第三)
伽利略的自由落体实验
在16世纪末,人人都认为重量大的物体比重量小的物体下落得快,因为伟大的亚里士多德已经这么说了。伽利略,当时在比萨大学数学系任职,他大胆地向公众的观点挑战。著名的比萨斜塔实验已经成为科学中的一个故事:他从斜塔上同时扔下一轻一重的物体,让大家看到两个物体同时落地。伽利略挑战亚里士多德的代价也许是他失去了工作,但他展示的是自然界的本质,而不是人类的权威,科学作出了最后的裁决。(排名第二)
托马斯·杨的双缝演示应用于电子干涉实验
牛顿和托马斯·杨对光的性质研究得出的结论都不完全正确。光既不是简单的由微粒构成,也不是一种单纯的波。20世纪初,麦克斯·普克朗和阿尔伯特·爱因斯坦分别指出一种叫光子的东西发出光和吸收光。但是其他实验还是证明光是一种波状物。经过几十年发展的量子学说最终总结了两个矛盾的真理:光子和亚原子微粒(如电子、光子等等)是同时具有两种性质的微粒,物理上称它们:波粒二象性。
将托马斯·杨的双缝演示改造一下可以很好地说明这一点。科学家们用电子流代替光束来解释这个实验。根据量子力学,电粒子流被分为两股,被分得更小的粒子流产生波的效应,它们相互影响,以至产生像托马斯·杨的双缝演示中出现的加强光和阴影。这说明微粒也有波的效应。
这一期《物理学世界》上另一篇由编辑彼特·罗格斯写的文章推测,直到1961年,某一位科学家才在真实的世界里做出了这一实验。(排名第一)
订阅:
博文 (Atom)